
Getting started with ue-rs

• Dongsu Park

• 11. Mar. 2025



Update engine

• Heart of rolling update mechanism of Flatcar

• Consists of 4 parts

o update_engine_client: command-line tool that sends queries to daemon

o update_engine: daemon that listens to client requests, relays the requests to a 
remote Nebraska server

o delta_generator: command-line tool that generates binary diff (delta) between 
2 versions of images. Invoked during build_image step of build scripts.

o flatcar-postinst: standalone script to take care of postinstall actions in Omaha 
reponse



Omaha

• Client server communication protocol with XML data body

o https://github.com/google/omaha/

• Communication between update_engine and Nebraska server

• Data structure defined in protobuf format in update_metadata.proto

o Translated into actual source files *.pb.{cc,h}, update_metadata.rs

https://github.com/google/omaha/


Format of update payload

• Header of every update payload includes a file magic string "CrAU"

• Format of update payload

header manifest data blobs signatures



Ue-rs: rust-reimplementation of update_engine

• Minimal reimplementation of update_engine, which is for historical reasons heavy 
and complicated.

• Rewriting only essential parts like parsing Omaha protocol from scratch

• Use pure Rust RSA libraries instead of relying on openssl.

• Written in Rust, a huge advantage for memory safety, while update_engine in C++

• Aims to be pluggable for integration with systemd-sysupdate

• Should be integrated with Nebraska



Ue-rs: current status

• Still a proof of concepts

• download_sysext: standalone binary to demonstrate sysext OEM image to parse 
Omaha response and verify checksum & signatures.

• omaha: library for parsing Omaha messages in dedicated workspace

• update-format-crau: library for verifying RSA signatures in dedicated workspace



Future work (?)

• Fetch, validate, install OS image and extensions

o Fetch, verify, write partitions, Kernel, sysext images

o Run postinstall hook

• Full support of Omaha protocol

o ping, check for updates, generate payloads

• Facilitate machine model

o Reports states like UPDATE_STATUS_{IDLE,UPDATE_AVAILABLE}

• Implement DBus communication for client-server architecture

o Based on Rust-native DBus implementation like zbus



Future work for newcomers

• Add missing unit tests

• Resolve dependency update issues (like idna)

• Resolve security issues (like rsa)

• Improve GitHub Actions CI

o Clippy



Questions?

Thanks!


	Slide 1: Getting started with ue-rs  
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

